Code: CS3T4

II B.Tech - I Semester - Regular/Supplementary Examinations November - 2019
 FORMAL LANGUAGES AND AUTOMATA THEORY (COMPUTER SCIENCE \& ENGINEERING)

Duration: 3 hours
Max. Marks: 70
PART - A
Answer all the questions. All questions carry equal marks

$$
11 \mathrm{x} 2=22 \mathrm{M}
$$

1.

a) Define Nondeterministic Finite State Automaton.
b) Identify the language generated by the regular expression $(1+0)^{*} 00(0+1)^{*}$
c) Define Ambiguous and Unambiguous grammar.
d) What is the meaning of the transition

$$
\delta\left(\mathbf{q}_{1}, \mathbf{0}, \mathbf{Z}_{0}\right)=\left\{\left(\mathbf{q}_{1}, \mathbf{0} \mathbf{Z}_{0}\right),\left(\mathbf{q}_{2}, \varepsilon\right)\right\}
$$

e) Give formal Notation of Turing Machine
f) Define NP class.
g) Define Universal Turing Machine.
h) Construct NFA with $€$-transitions for the regular expression $(1+01)$ *
i) Suppose h is the homomorphism from the alphabet $\{0,1,2\}$ to the alphabet $\{\mathrm{a}, \mathrm{b}\}$ defined by $\mathrm{h}(0)=\mathrm{a}, \mathrm{h}(1)=\mathrm{ab}, \mathrm{h}(2)=\mathrm{ba}$.
What is $\mathrm{h}(21120)$?
j) Consider the grammar G: S-->aaB , A-->bBb, B-->Aa . Check whether the string abbabba belongs to $\mathrm{L}(\mathrm{G})$ or not?
k) Mention any two operations of DCFL that are not closed.

PART - B

Answer any THREE questions. All questions carry equal marks.

$$
3 \times 16=48 \mathrm{M}
$$

2. a) Construct the minimum state Deterministic Finite Automaton for the following transition diagram

b) Construct Mealy machine for $\sum=\{0,1,2\}$, print the residue modulo 5 of input treated as a ternary number.
3. a) Obtain the Minimized DFA equivalent to the regular expression: $(00+11)^{*}(01+10)(00+11)^{*}$
b) Define Pumping lemma for Regular sets.
4. a) Convert the following CFG into its equivalent Greibach Normal Form S--> AA |0, A-->SS|1
b) Eliminate Useless symbols of the following grammar G S-->AB|CA, A-->a, B--> BC|AB, C-->aB|b
5. a) Design a Turing Machine for the language $\mathrm{L}=\left\{\mathrm{ww}^{\mathrm{R}} \mid \mathrm{w} \in(\mathrm{a}+\mathrm{b})^{*}\right.$ and w^{R} is the reverse of w$\} \quad 8 \mathrm{M}$
b) Design a PDA to accept the language $\mathrm{L}=\left\{\mathrm{w} \mid \mathrm{w} \epsilon(\mathrm{a}+\mathrm{b})^{*}\right.$ and $\mathrm{n}_{\mathrm{a}}(\mathrm{w})=\mathrm{n}_{\mathrm{b}}(\mathrm{w})$.

8 M
6. a) Show that the Halting Problem of a Turing machine is Undecidable.
b) Define Post's Correspondence Problem. Obtain the solution for the following Post's correspondence problem $A=\{b a, a b b, b a b\} B=\{b a b, b b, a b b\}$.

8 M

